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Abstract-Stochastic nature of convergence of steady state 

stochastic global optimization methods causes several seemingly 

attractive approaches to reduce the length of the optimization 

procedure.  

The properties of convergence dynamics of evolutionary 

programming (EP) and particle swarm (PS) are studied 

optimizing yeast glycolysis by COPASI software adjusting 

parameters of one, five, ten and fifteen reactions with five 

identical runs for each case. 
Results indicate the potential and risks of shortening the 

optimization time improving the possibilities of systematic 
search of adjustable parameter combinations. The choice of 
optimization method depending on the model size and the 

number of adjustable parameters should be based on number of 
tests on the convergence quality, speed and repeatability.  

Keywords: bioprocess design, dynamic modelling, kinetic 

parameters, optimization, convergence dynamics. 

I. INTRODUCTION 

The mission of systems biology and synthetic biology in 

metabolic engineering tasks [16] is to facilitate the 

development of new bioprocesses by the help of in silico 

procedures thus reducing the amount of necessary biological 

experiments which are more costly both in terms of time and 

resources. In case of biotechnological processes optimal 

steady state accordingly to a set of criteria usually is sought 

[16, 6] to increase the profitability. 

The most typical approach to representing biochemical 

networks is through a set of coupled deterministic ordinary 

differential equations intended to describe the network and 

the production and consumption rates for the individual 

species involved in the network [3]. The expected increase of 

the size of dynamic models [12] will facilitate their 

application. The main disadvantage in case of optimization of 

dynamic model is the lack of analytical optimization solutions 

to solve systems of nonlinear differential equations. 

The numerical methods are used in optimization tasks of 

biochemical networks. They can be divided in local and 

global optimum seeking methods [16,4]. Usually the global 

optimization methods are used to avoid stagnation of the 

solution in local minimum. There are two classes of global 

numerical optimization methods: deterministic ones and the 

stochastic ones.  The advantage of some of deterministic 

methods is the guaranteed reach of global optima for the price 

of unknown computation time [5,17]. Therefore, the 

stochastic global optimization methods are the most popular 

in optimization tasks of biochemical networks due to their 

universality and relatively fast convergence to the global 

optima close value [5,17]. 

Currently the growing computational power leads to the 

systematic scanning approach [18] of all possible 

combinations of adjustable parameters. Still, the 

combinatorial explosion of adjustable parameter sets force to 

look for efficient technologies to reduce necessary time either 

by rejecting some combinations of adjustable parameters or 

by reducing time for estimation of each combination. 

Following approaches may seem to be attractive: 1) quick 

determination of the best value of objective function using 

one long optimization run or several shorter ones, 2) reduce 

the optimization time assuming that the convergence 

dynamics will stay the same using the same model, software 

and optimization method and it’s settings, 3) switch between 

several optimization methods to converge faster to the best 

value (could be equal to the global optimum) or/and 4) find 

the fastest method for given model using several test runs 

with different methods. 

Dynamic yeast glycolysis model [10] and COPASI [11] 

optimization features are used to test reliability of the above 

mentioned approaches to reduce optimization time in case of 

combinatorial explosion due to high number of adjustable 

parameters. Five optimization runs of two stochastic 

optimization methods [17]: evolutionary programming (EP) 

and particle swarm (PS) are compared optimizing values of 

reaction speed related parameters of one, five, ten and fifteen 

enzymes. 

It is concluded that not all methods converge to the best 

value (may be equal to the global optimum) even using long 

(more than five days) optimization runs indicating that 

optimization length do not compensate drawbacks of 

optimization method that stagnates in a local optimum. 

Performance of a method may strongly depend on the number 

of optimized reactions within the same model using the same 

optimization tool, optimization method and it’s settings. Poor 

performance of optimization method in case of one set of 

adjustable parameters does not necessarily mean that 

performance will be poor in case of other set of adjustable 

parameters. 

II. MATERIALS AND METHODS 

Yeast glycolysis model [10] downloaded from Biomodels 

data base [15] is used as a test model for optimization. The 

model contains 2 compartments, 24 reactions and 25 

metabolites. Objective function in all optimization runs was 
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Concentrations of enzymes catalyzing 15 reactions were 

chosen as adjustable parameters [16]. Four numbers of 

reactions (1, 5, 10 and 15) were optimized to see the 

influence of the solution space on the convergence properties 

of objective function to the global optimum. The sequence of 

modified reactions was chosen in decreasing order of the 

module of flux control coefficients of ethanol flow (Table 1) 

obtained using Metabolic Control Analysis [7,8,13] for the 

steady state found for initial values of the model using 

COPASI. It was expected that the reactions with highest 

influence on the main product (ethanol) flow will be at the 

beginning of the list. 

TABLE I 
SEQUENCE OF MODIFIED REACTIONS 

Sequence 
number 

accordingly 

MCA 

Use in 
optimization 

experiment 

sets of 1, 5, 
10 and 15 

reactions 

Reaction 
name 

Module of 
flux control 

coefficient 

for Ethanol 
flow 

Adjustable 
model  

parameters 

1 1,5,10,15 HK 7.92e-01 V3m 

2 5,10,15 ADH 1.84e-01 V12m 

3 5,10,15 consum 5.21e-02 k23 

4 5,10,15 lpGlyc 3.13e-02 V15m 

5 5,10,15 PFK 2.81e-02 V5m 

6 10,15 GAPDH 2.01e-02 V8f, V8r 

7 10,15 Storage 1.89e-02 k22 

8 10,15 TIM 9.18e-03 V7f, V7r 

9 10,15 PK 5.20e-03 V10m 

10 10,15 GlcTrans 4.37e-03 V2f, V2r 

11 15 PGI 2.32e-03 V4f, V4r 

12 15 lpPEP 1.72e-03 k1, k2 

13 15 PDC 7.82e-16 V11m 

14 15 ALD 4.04e-16 V6f 

15 15 AK 2.13e-18 k1, k2 

 

COPASI [11], build 30, is used as optimization tool. Two 

global stochastic optimization methods are applied: 1) 

evolutionary programming [9,1,2] with following method 

parameters: Number of Generations: 30000; Population Size: 

20; Random Number Generator: 1; Seed: 0 and particle 

swarm [14] with following method parameters: Iteration 

Limit: 2000; Swarm Size: 50; Std. Deviation: 1e-06; Random 

Number Generator: 1; Seed: 0. The values of adjustable 

parameters were allowed to change within a wide range from 

-99% up to 1000% from their initial values. “Steady state” 

subtask of optimization was chosen. 

Progress of convergence to the best value of objective 

function was recorded as time series of CPU time and best 

objective function values. 5e+05 seconds (or 5.8 days) of 

CPU time were used in case of slowly converging 

optimizations. Five optimization experiments were performed 

for each number of reactions for each optimization method on 

a server running 64-bit Microsoft Windows Server 2008 

Standard Service Pack 2 operating system. Server has 4x 

QuadCore Intel Xeon MP E7330 2400 MHz CPU and 32,768 

MB of RAM. Several optimization experiments were run in 

parallel. Single processor per task was used as COPASI does 

not support optimization with parallel task distribution. 

 

III. RESULTS 

The performance of Evolutionary Programming (EP) and 

Particle Swarm (PS) methods is presented in the Figure 1 for 

different size of adjustable parameter sets: 1, 5, 10 and 15. 

The convergence curves are normalized the way that 0% 

value of objective function correspond to the steady state of 

unchanged model (K=4.99) while 100% correspond to the 

best value of objective function found in any run of identical 

optimization run: 5.02 optimizing one reaction (Fig.1a), 6.38 

optimizing 5 reactions (Fig.1b), 6.48 optimizing 10 reactions 

(Fig.1c) and 12.73 optimizing 15 reactions (Fig.1d). The 

presented optimization progress dynamics correspond to 

identical initial models for both methods. 
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Fig. 1. Average normalized convergence speed of evolutionary programming 

and particle swarm optimization methods (error bars represent standard 
deviation of five experiments): a – one reaction optimization, b – five 

reaction optimization, c – ten reaction optimization, d – fifteen reaction 

optimization. 

 

A. Convergence to the best value of the objective function 

Stochastic numerical methods do not guarantee reach of 

global optimum. Therefore, we use term „best value” to 

describe best objective function value that has been observed 

for particular number of optimized reactions independent on 

the optimization method. The best value may be global 

optimum but that is not guaranteed [16,4,5,17]. Particle 

swarm method has converged to objective function values 

that are close to the best value in all cases within 3500 

seconds of CPU time that correspond roughly to one hour. EP 

had a good convergence in case of one reaction and 

satisfactory convergence in case of 15 reactions (Fig.1). EP 

for 5 and 10 reactions had a poor convergence with high 

standard deviation values (Fig.2). 

Still, in case of one reaction the EP demonstrated the best 

performance both in terms of speed and reaching the best 

value while PS was better in case of five, ten and fifteen 

reactions. 
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Fig. 2. EP optimization experiments for five (a) and ten (b) reactions. Line 

with crosses represents the mean values, lines with rings show dynamics of 
individual optimizations. 

 

B. Stagnation at local optimum 

PS do not stagnate at local optimums and converge 

successfully to the best value. In case of five and ten reaction 

optimization with EP the five experiments demonstrate 

interesting behaviour. Three of five reaction experiments 

optimizing five reactions with EP reach the best value while 

two experiments stagnate at the level of approximately 40% 

of the best value. None of the five experiments optimizing 10 

reactions reach the best value. All of them lay within range of 

67-85%. The length of optimization did not change the 

stagnating behaviour: no significant changes have happened 

within time period from 1e+04 seconds (approx. 2.7 hours) 

until 5e+05 seconds (approx. 5.8 days) of CPU time. 

 

C. Dynamics of standard deviation 

Standard deviations of PS curves are close to zero latest 

10,000 seconds of CPU time from the start or earlier. In case 

of EP there are no significant changes of standard deviation 

starting from 10,000 seconds of CPU time except of small 

changes in case of optimization of 15 reactions. 

 

IV. DISCUSSION 

The aim of the experiment is to test the nature of behaviour 

of optimization methods and results may not be biologically 

relevant. The behaviour of one model and two different 

stochastic global optimization methods are tested to evaluate 

the nonlinearity features of the model as well as possibility to 

generalize experience of optimization gained optimizing the 

same model with the same optimization method and tool. 

While there were no surprises regarding the behaviour of 

PS regarding the fact of convergence to the best value and 

reduction of standard error during optimization it is 

interesting that convergence speed is similar in case of one, 

five, ten and fifteen reactions in spite of tremendous increase 

of the solution space from one to fifteen dimensions. Still, it 

is unclear how the steady state precondition has reduced the 

solution space. 

The performance of EP seems to be very promising and better 

than PS if one starts the comparison from optimizing one 

reaction which is the only case where EP performs slightly 

better than PS. The rest of experiments with five, ten and 

fifteen reactions state that it would be wrong to decide that 

EP is a generally better optimization method and one should 

prefer it to PS. In case of single reaction optimization based 

preference of EP a number of wrong conclusions might be 

made: 

- in case of five reactions the 85% of best value would be 

detected as 100%, thus, giving misleading impression 

about the optimization potential, 
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- in case of ten reactions the shape of the progress of 

objective function values of the curves in Fig.2b where 

just 40% of the best value are reached seems to be 

converged to the best value (100%) while in fact they do 

not indicate even half of the potential. 

Thus, the assumption that stochastic methods reach the 

global optima close value in reasonable computation times 

[5,17] may be dangerous at least in some cases. The lack of 

significant progress after 10,000 seconds of CPU time in any 

optimization experiment indicate that long or even very long 

optimization not always can compensate the drawbacks of the 

method or/and peculiarities of the model. None of performed 

40 experiments demonstrated significant improvement after 

the first 10,000 seconds. At the same time this conclusion 

cannot be generalized to other methods which are not tested. 

EP demonstrates interesting features regarding tendencies 

of the method when number of optimized reactions increase. 

Looking at one, five and ten reaction optimizations one can 

conclude that the method is not applicable to a big number of 

optimized reactions. The fourth group of experiments with 15 

optimized reactions perform much better than in case of five 

and ten reactions. Thus, even that tendency cannot be 

generalized. 

Perhaps variations of parameters of the optimization 

method would give better performance but it is significant 

effort due to combinatorial problems with values of method 

parameters. 

Experiments also indicate that it is very critical to pay 

attention to the determination of the best value that might be 

also the global optimum. It has sense to test several methods 

with several optimization runs to avoid possible stagnation of 

the objective function value at local optimum. 

 

V. CONCLUSION 

Convergence tests of two global stochastic optimization 

methods performing steady state task indicate some 

peculiarities of convergence behaviour that should be tested 

more systematically to increase the reliability of this popular 

class of optimization methods. The assumption that stochastic 

global optimization methods in case of design optimization of 

a biochemical network reach the global optima close value in 

reasonable computation times [5,17] is true in most cases but 

exceptions are well possible. Several optimization runs with 

particular optimization method, model, software tool and set 

of optimization method parameters should be performed to 

find out the most appropriate method for particular 

optimization task. Generalization and extrapolation of 

optimization behaviour can cause several misleading 

conclusions: 1) too low best value of the objective function 

and 2) too long or too short estimation of optimization time 

needed to reach objective function value that is close to the 

best one. 

Application of a single stochastic global optimization 

method raise risks of failure to find the best possible value of 

objective function. Long optimization runs do not always 

ensure convergence to the best value of the objective function 

and do not compensate the poor convergence properties of 

optimization methods for a particular model. 

Normalized curves of convergence dynamics in all the 

optimization experiments demonstrate asymptotic behaviour. 
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